Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 6 de 6
Фильтр
1.
Aust J Gen Pract ; 52(6): 345-357, 2023 06.
Статья в английский | MEDLINE | ID: covidwho-20237045

Реферат

BACKGROUND: Patient harm resulting from drug interactions between conventional and traditional or complementary medicines (CM) are avoidable. OBJECTIVE: To provide a clinical overview of a selection of CM interactions with drugs commonly used in Australian general practice or in the management of COVID-19. DISCUSSION: Many herb constituents are substrates for cytochrome P450 enzymes, and inducers and/or inhibitors of transporters such as P-glycoprotein. Hypericum perforatum (St John's Wort), Hydrastis canadensis (golden seal), Ginkgo biloba (ginkgo) and Allium sativum (garlic) are reported to interact with many drugs. Simultaneous administration of certain anti-viral drugs with zinc compounds and several herbs should also be avoided. Preventing and identifying unwanted CM-drug interactions in primary care requires vigilance, access to CM-drug interaction checkers and excellent communication skills. Potential risks from interactions should be balanced against the potential benefits of continuing the drug and/or CM and involve shared decision making.


Тема - темы
COVID-19 , Garlic , Humans , Pharmaceutical Preparations , Herb-Drug Interactions , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Australia , Primary Health Care
2.
Curr Drug Metab ; 23(5): 374-393, 2022 08 03.
Статья в английский | MEDLINE | ID: covidwho-1963214

Реферат

BACKGROUND: The representative anti-COVID-19 herbs, i.e., Poriacocos, Pogostemon, Prunus, and Glycyrrhiza plants, are commonly used in the prevention and treatment of COVID-19, a pandemic caused by SARSCoV- 2. Diverse medicinal compounds with favorable anti-COVID-19 activities are abundant in these plants, and their unique pharmacological/pharmacokinetic properties have been revealed. However, the current trends in Drug Metabolism/Pharmacokinetic (DMPK) investigations of anti-COVID-19 herbs have not been systematically summarized. METHODS: In this study, the latest awareness, as well as the perception gaps regarding DMPK attributes, in the anti- COVID-19 drug development and clinical usage was critically examined and discussed. RESULTS: The extracts and compounds of P.cocos, Pogostemon, Prunus, and Glycyrrhiza plants show distinct and diverse absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties. The complicated herbherb interactions (HHIs) and herb-drug interactions (HDIs) of anti-COVID-19 Traditional Chinese Medicine (TCM) herb pair/formula dramatically influence the PK/pharmacodynamic (PD) performance of compounds thereof, which may inspire researchers to design innovative herbal/compound formulas for optimizing the therapeutic outcome of COVID-19 and related epidemic diseases. The ADME/T of some abundant compounds in anti-COVID-19 plants have been elucidated, but DMPK studies should be extended to more compounds of different medicinal parts, species, and formulations and would be facilitated by various omics platforms and computational analyses. CONCLUSION: In the framework of pharmacology and pharmacophylogeny, the DMPK knowledge base would promote the translation of bench findings into the clinical practice of anti-COVID-19 and speed up the anti-COVID-19 drug discovery and development.


Тема - темы
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Glycyrrhiza , Drugs, Chinese Herbal/therapeutic use , Herb-Drug Interactions , Humans , Medicine, Chinese Traditional , Metabolic Clearance Rate , Plant Extracts/therapeutic use
3.
Acta Pharmacol Sin ; 43(4): 1072-1081, 2022 Apr.
Статья в английский | MEDLINE | ID: covidwho-1285959

Реферат

Jingyin granules, a marketed antiviral herbal medicine, have been recommended for treating H1N1 influenza A virus infection and Coronavirus disease 2019 (COVID-19) in China. To fight viral diseases in a more efficient way, Jingyin granules are frequently co-administered in clinical settings with a variety of therapeutic agents, including antiviral drugs, anti-inflammatory drugs, and other Western medicines. However, it is unclear whether Jingyin granules modulate the pharmacokinetics of Western drugs or trigger clinically significant herb-drug interactions. This study aims to assess the inhibitory potency of the herbal extract of Jingyin granules (HEJG) against human drug-metabolizing enzymes and to clarify whether HEJG can modulate the pharmacokinetic profiles of Western drug(s) in vivo. The results clearly demonstrated that HEJG dose-dependently inhibited human CES1A, CES2A, CYPs1A, 2A6, 2C8, 2C9, 2D6, and 2E1; this herbal medicine also time- and NADPH-dependently inhibited human CYP2C19 and CYP3A. In vivo tests showed that HEJG significantly increased the plasma exposure of lopinavir (a CYP3A-substrate drug) by 2.43-fold and strongly prolonged its half-life by 1.91-fold when HEJG (3 g/kg) was co-administered with lopinavir to rats. Further investigation revealed licochalcone A, licochalcone B, licochalcone C and echinatin in Radix Glycyrrhizae, as well as quercetin and kaempferol in Folium Llicis Purpureae, to be time-dependent CYP3A inhibitors. Collectively, our findings reveal that HEJG modulates the pharmacokinetics of CYP substrate-drug(s) by inactivating CYP3A, providing key information for both clinicians and patients to use herb-drug combinations for antiviral therapy in a scientific and reasonable way.


Тема - темы
COVID-19 Drug Treatment , Influenza A Virus, H1N1 Subtype , Animals , Antiviral Agents/pharmacology , Cytochrome P-450 CYP3A Inhibitors , Herb-Drug Interactions , Humans , Microsomes, Liver , Rats
4.
PLoS One ; 16(6): e0248479, 2021.
Статья в английский | MEDLINE | ID: covidwho-1266543

Реферат

The Coronavirus disease (COVID-19) caused by the virus SARS-CoV-2 has become a global pandemic in a very short time span. Currently, there is no specific treatment or vaccine to counter this highly contagious disease. There is an urgent need to find a specific cure for the disease and global efforts are directed at developing SARS-CoV-2 specific antivirals and immunomodulators. Ayurvedic Rasayana therapy has been traditionally used in India for its immunomodulatory and adaptogenic effects, and more recently has been included as therapeutic adjuvant for several maladies. Amongst several others, Withania somnifera (Ashwagandha), Tinospora cordifolia (Guduchi) and Asparagus racemosus (Shatavari) play an important role in Rasayana therapy. The objective of this study was to explore the immunomodulatory and anti SARS-CoV2 potential of phytoconstituents from Ashwagandha, Guduchi and Shatavari using network pharmacology and docking. The plant extracts were prepared as per ayurvedic procedures and a total of 31 phytoconstituents were identified using UHPLC-PDA and mass spectrometry studies. To assess the immunomodulatory potential of these phytoconstituents an in-silico network pharmacology model was constructed. The model predicts that the phytoconstituents possess the potential to modulate several targets in immune pathways potentially providing a protective role. To explore if these phytoconstituents also possess antiviral activity, docking was performed with the Spike protein, Main Protease and RNA dependent RNA polymerase of the virus. Interestingly, several phytoconstituents are predicted to possess good affinity for the three targets, suggesting their application for the termination of viral life cycle. Further, predictive tools indicate that there would not be adverse herb-drug pharmacokinetic-pharmacodynamic interactions with concomitantly administered drug therapy. We thus make a compelling case to evaluate the potential of these Rasayana botanicals as therapeutic adjuvants in the management of COVID-19 following rigorous experimental validation.


Тема - темы
Antiviral Agents/metabolism , Asparagus Plant/chemistry , COVID-19/metabolism , Immunologic Factors/metabolism , Molecular Docking Simulation/methods , Plant Extracts/metabolism , SARS-CoV-2/enzymology , Tinospora/chemistry , Withania/chemistry , Antiviral Agents/pharmacokinetics , Binding Sites , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Herb-Drug Interactions , Humans , Immunologic Factors/pharmacokinetics , India , Medicine, Ayurvedic/methods , Phytotherapy/methods , Plant Extracts/pharmacokinetics , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
5.
Food Chem Toxicol ; 149: 111998, 2021 Mar.
Статья в английский | MEDLINE | ID: covidwho-1139497

Реферат

Corona Virus Disease 2019 (COVID-19) has spread all over the world and brings significantly negative effects on human health. To fight against COVID-19 in a more efficient way, drug-drug or drug-herb combinations are frequently used in clinical settings. The concomitant use of multiple medications may trigger clinically relevant drug/herb-drug interactions. This study aims to assay the inhibitory potentials of Qingfei Paidu decoction (QPD, a Chinese medicine compound formula recommended for combating COVID-19 in China) against human drug-metabolizing enzymes and to assess the pharmacokinetic interactions in vivo. The results demonstrated that QPD dose-dependently inhibited CYPs1A, 2A6, 2C8, 2C9, 2C19, 2D6 and 2E1 but inhibited CYP3A in a time- and NADPH-dependent manner. In vivo test showed that QPD prolonged the half-life of lopinavir (a CYP3A substrate-drug) by 1.40-fold and increased the AUC of lopinavir by 2.04-fold, when QPD (6 g/kg) was co-administrated with lopinavir (160 mg/kg) to rats. Further investigation revealed that Fructus Aurantii Immaturus (Zhishi) in QPD caused significant loss of CYP3A activity in NADPH-generating system. Collectively, our findings revealed that QPD potently inactivated CYP3A and significantly modulated the pharmacokinetics of CYP3A substrate-drugs, which would be very helpful for the patients and clinicians to avoid potential drug-interaction risks in COVID-19 treatment.


Тема - темы
COVID-19 Drug Treatment , Cytochrome P-450 CYP3A/metabolism , Drugs, Chinese Herbal/pharmacology , Herb-Drug Interactions , Animals , Area Under Curve , China , Drugs, Chinese Herbal/therapeutic use , Lopinavir/pharmacokinetics , Male , Microsomes, Liver , NADP/metabolism , Phytotherapy , Rats, Sprague-Dawley , SARS-CoV-2
6.
Plant Cell Rep ; 39(9): 1109-1114, 2020 Sep.
Статья в английский | MEDLINE | ID: covidwho-607291

Реферат

The exponential spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emphasizes the immediate need for effective antiviral drugs and vaccines that could control and prevent the spread of this pandemic. Several new and repurposed drugs are being tested for their effectiveness in the treatment regime, and the development of vaccines is underway. The availability of genome sequence information of the virus and the identification of potential targets to neutralize and eradicate the infection have enabled the search for novel as well as existing molecules to perform the desired function. However, the application of plants in the development of potential biomolecules, such as antibiotics and vaccines, is limited. Traditional medicines involving plant-based formulations have proven successful in boosting immunity and providing tolerance to virus infections. Still, in-depth studies are not available to explore the bioactive compounds of plant origin and their mechanism of action. Given this, the current opinion article conveys our thoughts and perspectives on the promising usage of plant-based biomolecules in circumventing SARS-CoV-2, and how these molecules can work synergistically with other potential drugs for treating SARS-CoV-2.


Тема - темы
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Phytochemicals/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/immunology , Drug Combinations , Drug Synergism , Herb-Drug Interactions , Humans , Immunity , Pandemics , Phytochemicals/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pneumonia, Viral/immunology , SARS-CoV-2
Критерии поиска